127 research outputs found

    Wetting of cholesteric liquid crystals

    Full text link
    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal

    Pattern-induced anchoring transitions in nematic liquid crystals

    Get PDF
    In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross section sculpted on a chemically homogeneous substrate which favors local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal case, we observe a homeotropic to planar anchoring transition as the substrate roughness is increased. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.Comment: 36 pages, 15 figures, revised version submitted to Journal of Physics: Condensed Matte

    Nematic liquid crystals on sinusoidal channels: the zigzag instability

    Get PDF
    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau–de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.Portugal, Fundación para la Ciencia y la Tecnología UID / FIS / 00618/2013Portugal, Fundación para la Ciencia y la Tecnología EXCEL / FIS-NAN / 0083/2012España, Ministerio de Economía y Competitividad FIS2012-32455Junta de Andalucía P09-FQM-493

    Analysis of organophosphorus pesticides in whole blood by GC-MS-μECD with forensic purposes

    Get PDF
    In the present work, two multi-residue methods for the determination of ten organophosphorus pesticides (OPs), namely chlorfenvinphos, chlorpyrifos, diazinon, dimethoate, fenthion, malathion, parathion, phosalone, pirimiphos-methyl and quinalphos, in post-mortem whole blood samples are presented. The adopted procedure uses GC-MS for screening and quantitation, and GC-µECD (electron capture detector) for compound confirmation. Three different Solid Phase Extraction (SPE) procedures for OPs with Oasis® hydrophilic lipophilic balanced (HLB) and Sep-Pak® C18 cartridges were tested, and followed by GC-µECD and GC-MS analysis. The Sep-Pak® C18 cartridges extraction procedure was selected since it generated analytical signals 5 times higher than those obtained with the two different Oasis® HLB cartridges extraction procedures. The method has shown to be selective for the isolation of selected OPs as well as to the chosen internal standard (ethion) in postmortem blood samples. Calibration curves between 50 and 5000 ng/mL were prepared using weighted linear regression models (1/x2). It was not possible to establish a working range for fenthion by GC-µECD due to the lower sensitivity of the detector to this compound, whereas for pirimiphos-methyl it was set between 500 and 5000 ng/mL. The limit of quantitation was established at 50 ng/mL for all analytes, except for pirimiphos-methyl by GC-µECD analysis (500 ng/mL). The average extraction efficiency ranged from 72 to 102%. The developed methods were considered robust and fit for the purpose, and had already been adopted in the laboratory routine analysis.info:eu-repo/semantics/acceptedVersio

    Nematic wetting and filling of crenellated surfaces

    Get PDF
    We investigate nematic wetting and filling transitions of crenellated surfaces (rectangular gratings) by numerical minimization of the Landau–de Gennes free energy as a function of the anchoring strength, for a wide range of the surface geometrical parameters: depth, width, and separation of the crenels. We have found a rich phase behavior that depends in detail on the combination of the surface parameters. By comparison to simple fluids, which undergo a continuous filling or unbending transition, where the surface changes from a dry to a filled state, followed by a wetting or unbinding transition, where the thickness of the adsorbed fluid becomes macroscopic and the interface unbinds from the surface, nematics at crenellated surfaces reveal an intriguingly rich behavior: in shallow crenels only wetting is observed, while in deep crenels, only filling transitions occur; for intermediate surface geometrical parameters, a new class of filled states is found, characterized by bent isotropic-nematic interfaces, which persist for surfaces structured on large scales, compared to the nematic correlation length. The global phase diagram displays two wet and four filled states, all separated by first-order transitions. For crenels in the intermediate regime re-entrant filling transitions driven by the anchoring strength are observe

    Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging

    Get PDF
    In this study, brewers spent grain (BSG) arabinoxylans-based nanocomposite films were prepared by solvent casting of arabinoxylans (AX) suspensions containing different amounts of nanofibrillated cellulose (NFC, 5, 10, 25, 50 and 75% mass fraction). The obtained nanocomposite films were homogeneous and presented thermal stability up to 230 °C and good mechanical properties (Young's modulus up to 7.5 GPa). Additionally, the films with 50% NFC were loaded with ferulic acid or feruloylated arabinoxylo-oligosaccharides enriched fraction from BSG (75 mg per g of film). This combination enhanced the UV–Vis barrier properties and imparted additional functionalities to the films, namely (i) antioxidant activity up to 90% (DPPH scavenging activity), (ii) antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, and (iii) antifungal activity towards the polymorphic fungus Candida albicans. Therefore, these fully biobased nanocomposite films show potential for application as active food packaging systems.publishe

    More than just exosomes: distinct Leishmania infantum extracellular products potentiate the establishment of infection

    Get PDF
    The use of secretion pathways for effector molecule delivery by microorganisms is a trademark of pathogenesis. Leishmania extracellular vesicles (EVs) were shown to have significant immunomodulatory potential. Still, they will act in conjunction with other released parasite-derived products that might modify the EVs effects. Notwithstanding, the immunomodulatory properties of these non-vesicular components and their influence in the infectious process remains unknown. To address this, we explored both in vitro and in vivo the immunomodulatory potential of promastigotes extracellular material (EXO), obtained as a whole or separated in two different fractions: EVs or vesicle depleted EXO (VDE). Using an air pouch model, we observed that EVs and VDE induced a dose-dependent cell recruitment profile different from the one obtained with parasites, attracting significantly fewer neutrophils and more dendritic cells (DCs). Additionally, when we co-inoculated parasites with extracellular products a drop in cell recruitment was observed. Moreover, in vitro, while VDE (but not EVs) downregulated the expression of DCs and macrophages activation markers, both products were able to diminish the responsiveness of these cells to LPS. Finally, the presence of Leishmania infantum extracellular products in the inoculum promoted a dose-dependent infection potentiation in vivo, highlighting their relevance for the infectious process. In conclusion, our data demonstrate that EVs are not the only relevant players among the parasite exogenous products. This, together with the dose-dependency observed, opens new avenues to the comprehension of Leishmania infectious process. The approach presented here should be exploited to revisit existing data and considered for future studies in other infection models.NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also funded by FEDER through the Operational Competitiveness Programme – COMPETE and by National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project FCOMP-01-0124-FEDER-019648 (PTDC/BIA-MIC/118644/2010). PC was supported by Foundation for Science and Technology (FCT), Portugal, through the individual grant SFRH/BD/121252/2016info:eu-repo/semantics/publishedVersio

    Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application

    Get PDF
    The utilization of natural compounds, such as phenolic acids and biopolymers, in the healthcare domain is gaining increasing attention. In this study, bacterial nanocellulose (BC) membranes were loaded with ionic liquids (ILs) based on phenolic acids. These ionic compounds, with improved solubility and bioavailability, were prepared by combining the cholinium cation with anions derived from caffeic, ellagic and gallic acids. The obtained BC-ILs membranes were homogeneous, conformable and their swelling ability agreed with the solubility of each IL. These membranes revealed a controlled ILs dissolution rate in the wet state and high antioxidant activity. In vitro assays performed with Raw 264.7 macrophages and HaCaT keratinocytes revealed that these novel BC-ILs membranes are non-cytotoxic and present relevant anti-inflammatory properties. Diffusion studies with Hanson vertical diffusion cells showed a prolonged release profile of the ILs from the BC membranes. Thus, this work, successfully demonstrates the potential of BC-ILs membranes for skin treatment.publishe

    Adaptações no Serviço de Cirurgia Vascular do CHULN durante a pandemia de COVID-19 e impacto na atividade global

    Get PDF
    © SPACVWith the onset of the SARS-CoV-2 pandemic in early 2020, health services and personnel adapted their resources to mitigate and control the outbreak. These needs inevitably led to adaptations in most medical and surgical departments, including in our Vascular Surgery department. As we are facing a second outbreak of this pandemic, with unpredictable outcomes and repercussions in health services, it is crucial to learn from previous experiences and share strategies to perform the best care to our patients, despite the restrictions that have been imposed. Through this paper, we review the adaptations in Centro Hospitalar Universitário Lisboa Norte and particularly in our department to overcome the pandemic. We also assess the impact of these changes in our activity and compare with the experience of other fellow surgeons. With an upcoming second outbreak, it is crucial to learn from this and other departments’ experiences to overcome a potential health crisis.info:eu-repo/semantics/publishedVersio

    Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence

    Get PDF
    Experimental infections with visceral Leishmania spp. are frequently performed referring to stationary parasite cultures that are comprised of a mixture of metacyclic and non-metacyclic parasites often with little regard to time of culture and metacyclic purification. This may lead to misleading or irreproducible experimental data. It is known that the maintenance of Leishmania spp. in vitro results in a progressive loss of virulence that can be reverted by passage in a mammalian host. In the present study, we aimed to characterize the loss of virulence in culture comparing the in vitro and in vivo infection and immunological profile of L. infantum stationary promastigotes submitted to successive periods of in vitro cultivation. To evaluate the effect of axenic in vitro culture in parasite virulence, we submitted L. infantum promastigotes to 4, 21 or 31 successive in vitro passages. Our results demonstrated a rapid and significant loss of parasite virulence when parasites are sustained in axenic culture. Strikingly, the parasite capacity to modulate macrophage activation decreased significantly with the augmentation of the number of in vitro passages. We validated these in vitro observations using an experimental murine model of infection. A significant correlation was found between higher parasite burdens and lower number of in vitro passages in infected Balb/c mice. Furthermore, we have demonstrated that the virulence deficit caused by successive in vitro passages results from an inadequate capacity to differentiate into amastigote forms. In conclusion, our data demonstrated that the use of parasites with distinct periods of axenic in vitro culture induce distinct infection rates and immunological responses and correlated this phenotype with a rapid loss of promastigote differentiation capacity. These results highlight the need for a standard operating protocol (SOP) when studying Leishmania species
    corecore